

Secured Agile Architecture for Context Aware
Pervasive Computing

Alti Siva Prakasa Rao1 and Prof. M.S.Prasad Babu2

1Department of Computer Science & Systems Engg., Andhra University, Andhra Polytechnic, Kakinada,

East Godavari Dist. A.P., 533 002
 2. Department of Computer Science & Systems Engg. Andhra University, VISAKHAPATNAM

Abstract- Context refers to information such as location, time,
user preferences, user emotions, environment status,
computational devices and network parameters etc. Context-
aware pervasive computing utilizes the information about the
physical world collected form various sensors and changes
the behavior automatically considering current context,
history and other user preferences. The context viewed or
used by pervasive systems may change mobility or
characteristics of that particular device. Access of certain
information may be restricted to a particular security level to
protect information from tampering. Security contexts
enhance the security in context-aware pervasive systems
which are nothing but collection of user’s information which
is applicable to available security policies. Traditional
security models aim to provide integrity, confidentiality and
availability of information. In Pervasive computing
environments high level personal privacy is very much
required. In this paper a new architecture is proposed for
context-aware pervasive computing using agile security
concepts. It explores how best agile software agents can adapt
information and modifies the context as per security policies.

Keywords: Software architecture, Secure pervasive
computing, Ubiquitous computing, agile, software
framework, context awareness, re-factoring.

1. INTRODUCTION:
Context–aware pervasive computing is becoming much
prominent field in the new era of communications. It is
important to discriminate between real world situation, the
data captured to represent situation, the abstract
representation of the situation and mostly behavior of the
application according to the available information [1]. The
context depends on situation, sensor data, history etc.
Moreover the context-aware information used for
determining the context, should be error free and time
based or location based or both time and location based.
When implementing the context awareness idea, it should
use the sensor data and predict the current situation or
even forecast a situation by using proper probabilistic
models and data mining techniques. Also while capturing
sensor data it is needed to identify the useful contexts for
the computing environment. As a variety of context-aware
environments begin to grow, pervasive applications shall
have to interact with environments that they have never
encountered before. Extension to Strathclyde Context
Infrastructure (SCI) [2] gives context-aware applications,
the potential to adapt unfamiliar environments

transparently. It is actually a vision of a context discovery
based on automated semantic reasoning about context
information and services.
The Context Modeling Language tool (CML) [3] will
assist designers with the task of exploring and specifying
the context requirements of a context application. The
model will capture user activities as temporal fact,
association between users and communication channels
and devices, locations of users and devices. An intangible
framework and software infrastructure that together
address known software engineering challenges and
enable further practical exploration of social and usability
issues by facilitating the prototyping and fine tuning of
context aware applications [4]. In particular, pervasive
computing demands applications that are capable of
operating in highly dynamic environments and of placing
minimal demands on user attention.

2. AGILE SOFTWARE ENGINEERING

ENVIRONMENT:
Creating solutions of any size based on pervasive
computing requires an understanding of the entire software
life cycle. It is no longer acceptable to just hope the final
system comes together. Instead, designing for deployment,
performance and security is necessary at the outset. This
session looks at the new Software Development
Framework Agile, a context-based software development
process for building context-aware pervasive computing
applications. It will concentrate on practical and concrete
techniques that can help to build better-performing, secure,
and deployable solutions.
In the mid of 1990s the modern definition of agile
software development was evolved as part of a reaction
against "heavyweight" methods, as typified by a heavily
regulated, regimented, micro-managed use of the waterfall
development model [19]. The process is originated from
the use of the waterfall model and was seen as
bureaucratic, slow, demeaning, and contradicted the ways
that software engineers actually perform effective work.
Initially, agile methods were called "lightweight methods".
In 2001, prominent members of the software community
met at Snowbird and adopted the name "agile methods".
Later, some of these people formed ‘The Agile Alliance’,
a non-profit organization that promotes agile development.
Through agility it makes fundamental assumption that
continual change should be expected and that is
impossible to isolate a solution (context) from these
changes. It recognizes the context requirements that can be

Alti Siva Prakasa Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 711-716

711

difficult to articulate at the outset and that they will often
undergo significant modifications as the possibilities
become clearer to users. Agile process is iterative process
which will show the status of quality progressively. Agile
methodologies develop practices that are most useful and
primarily applied during the design and development
phases of a project life cycle.
The agile approach like specification–driven development
combines features of test-driven development and plan-
based approach of design by contract, will lead to
development of context-awareness in pervasive computing
[8]. Both tests and contracts are different types of
specifications (contexts) and both are useful and
complementary for building high quality solutions. For
designing tests or contracts are similar to UML’s class and
collaboration diagrams. Extension to this agent based
approach will combine high level functions with static
typing to separate the routine from functions.
Particularly agile software engineering environment will
support Just-In-Time (JIT) management, network-centric
architecture and collaborative features (distributed
repository), which are not easy to implement in
conventional software engineering environments [10]. In
agile methodology, it is important to understand that it is
not possible to understand all the requirements at the
beginning of project, then analyze these requirements and
finally to develop the architectures for the whole system
[18].

3. RELATED WORK AND MOTIVATION:
The oxygen project [6] at MIT envisions a future where
the ubiquitous computing devices are freely available and
easily accessible as oxygen. The goal of project AURA [7]
at Human Computer Interaction Institute of Carnegie
Mellon University is to provide users with invisible
ambience of persisting computing and information
services regardless of location. Planet Blue [11] project at
IBM and cooltown Project [12] at HP. Jini is a dynamic
open-architecture networking technology enabling
spontaneous networking of services. Jini enables ad-hoc
network information through mechanisms such as service
discovery/join and distributed events. ‘One World
Architecture’ requires that all resources should be
explicitly bound and released while ISAM supports
dynamic adjusts to new state based on system application
negotiating [18].
None of the architectures addressed all the security
requirements like authentication, authorization and
confidentiality. Most of the literature focuses on the
intrinsic limitations of environments and connected
devices. Also addressing the security requirements for all
kinds of environments (heterogeneous) and context would
be too expensive or not possible on tiny computing
devices [21]. An autonomous software agent [like Agile
Process Agent] will transfer its execution dynamically,
save network bandwidth and increase the reliability and
efficiency of the execution. These agents will be capable
of performing the activities like maintainability,
interoperability, scalability, reusability, extensibility,
portability and adaptability [22].
It is very interest to observe that all previous work on

combining security and context aware pervasive
computing applications with focus on specific applications
only. They never considered user’s preferences. The
present Agile Process Agent will consider the user’s
preferences also in the form of predefined contexts. Also
security decisions follow an old fashioned rule-based
formalism which does not consider systems and network
dynamics. No architecture addressed the reusable
architectures or mechanisms for context acquisition and
storage as mentioned in the proposed architecture [17].
Using data-centric data model, such as XML schema,
expresses schemas as data rather than code.

4. PROPOSED ARCHITECTURAL MODEL FOR

CONTEXT-AWARE PERVASIVE COMPUTING:
Agile processes encourage and embrace requirements
change. The proposed architecture consists of three basic
components namely context information model, network
centric database server and Agile Process Agent.
4.1 Context Information Model:
This model will emphasize the modules like sensor data
collection, categorization of collected data into
distinguished contexts, modeling the context data using
the contexts. On selecting the related context model and
by using the data mining tools delivers the services if
model matches with the concerned context model. The
better aggregation of context types will help application
designers to uncover the most likely parts of context that
will be useful in their applications [28]. Randomized
Cache prediction algorithms interpreted in this model
improve the cache hit rate in the case of disconnected
operation for pervasive devices like handheld mobile
devices. The algorithm includes phases like data pre
processing, clustering the data according to association
degree and selection of data required for applications.
Provision for cache replacement algorithm enhances the
effectiveness of the model. The context modeling module
incorporates the components like cache algorithm,
clustering procedure and data mining tools.
4.1.1 .Cache algorithm:
The goal of cache maintenance algorithm is to minimize
the cache misses which are truly expensive part of process.
The sequence of memory references is not under control of
the algorithm and it depends on the application that is
running. Cache replacement algorithms like LIFO, FIFO,
and LRU are used to predict the cache.
4.1.2 Clustering for context model:
The process of grouping a set of physical or abstract
objects into classes of similar objects is called clustering.
A cluster is a collection of data objects that are similar to
one another within the same cluster and dissimilar to the
objects in other clusters. For context modeling, k-medoids
algorithm may be used for identifying the similar contexts.
4.1.3 Data retrieval:
Selection of correct context may be obtained by using the
techniques like Apriori Algorithm for finding frequent
item sets using candidate generation. Apriori is an
influential algorithm for mining frequent item sets for
Boolean association rules.
4.2 Network centric Database Server:
The graphical notation of CML (Context Modeling

Alti Siva Prakasa Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 711-716

712

Language) is well suited for use when defining the context
information used by context aware applications, and its
relational analogue is a natural choice of context storage
and management [4].Data can be maintained as relational
database. The metadata will contain the indexed quick
reference to the various parts of Database server. The
conceptual design of data base involves forming effective
relations between temporal data and active dataset. The
need of a distributed, intelligent and adaptable context
aware system is felt that facilitates resource discovery and
adaptation, as indicated by the user demand. A history
associated with each user predicts the user’s preferences
for different interactions. A distributed model of a context
aware system that adapts services on the basis of the
inferred contextual information coupled with the history of
the user is thus envisaged. Contextual graphs elaborate the
security concerns well.
4.2.1 Contextual graph:
Contextual graph is an acyclic graph with a unique input, a
unique output and a serial parallel combination of nodes
connected by oriented arcs. By using contextual graphs it
is easy to identify the roles and authentication of users
identified. Example shown below.

4.3 Agile Process Agent:
The Agile Agent, which provides the core agile agent
development process, implements an Integrated
Development Process (IDP) that consists of four key
phases: Design, Test-Driven Implementation, Release and
Review, and Re-factoring and Enhancement that are
applied iteratively until a finished state is reached. The
Agile agent supports a bottom-up approach that increases
flexibility and enables the development team to focus on
the rapid delivery of working model, and to respond
quickly to changes in requirements. Re-factoring and
Enhancement is not strictly a phase; instead it represents a
continuous process that involves applying improvements
and enhancements to the finished model. Typically, re-
factoring entails applying changes to the internal structure
of the application software to make it more efficient and
easier to comprehend, without altering the external
behavior. This process may necessitate: removal of
duplicated code; the simplification of complex logic; and
clarifying of ambiguous model. This continuous analysis
of model helps enhance the design and implementation of
the application (re-factoring in small steps helps prevent
the introduction of defects). Enhancements include new or
improved functionality that may further improve the
application. This process, along with the review,

highlights outstanding issues and motivates any required
enhancements to the process.
Agile Process Agent introduces the agility (adoptability) in
acquiring context information and responding to the
applications in real time. The agile process agent works
with iterative and refactoring features. Agile Process agent
reflects the all phases of agile framework. It exhibits the
requirement analysis and feasibility study processes in
analyzing sensor data collection. The central block of agile
agent exhibits context driven design & modeling with the
help of refactoring feature. It is similar to the Specification
Driven development [8]. After collecting the context
information from a set of sensor data aggregated on
specific preferences in the context model. If any context
seems to be new that context information will be allotted
with new name and updated the list of contexts in the
database. Context models are prepared focusing on some
preferred specifications only. Clustering algorithms [5]
may be used for context modeling. This process identifies
outliers in context information and makes the model
stable. Also it is possible to use context information for
predicting model which is not available in the database.
Refactoring the existing model leads to improve the
efficiency. Since refactoring leads to redesign from the
bottom up, often to eliminate model deficiencies, modules
may be assigned new functionality which may not work
well with security constraints [23].
Once the modeling done, with the help of sophisticated
data mining tools like apriori algorithm, the context model
responds to user requests quickly. While responding to
user request and context model selection the agile agent
works collaboratively with database which is residing in a
network centric database server. Once connected to the
user the agile process agent keeps on iterating the
modeling and design modules to maintain the quality of
service, flexibility and adaptation. Kick-off services [13]
provide the support and guidance to quickly overcome
obstacles and gain proficiency in their agile practices. This
model provides a feature like default model assignment,
since even after the construction of excellent models from
context information by the Agile Process Agent they may
not match the requirements of the application request by
the user. In those conditions the generic models which
were kept in the database will be assigned to that
application. But during the period of application usage, the
agent tries to improve the quality of model through
refactoring feature.

5. AGILE SECURITY:
Agility is a set of combined quality properties, and
sensitive to varying resources and sensitive to changes in
contexts. Beznosov presented a conceptual analysis of the
suitability of ‘Extreme Programming’ for building secure
systems and also introduced the notion of “good enough
security” without defining it a priori [20]. Iterations and
frequent iterations common to agile processes significantly
increase the cost of involving the third party at all
iterations, while the security assurance efforts proceed,
development should continue [23]. Now most of the
research is towards securing context-aware applications.
Contextual information will enhance control of the model

Alti Siva Prakasa Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 711-716

713

which will further focus on the specifications of the
applications [17]. While taking security decisions the
methods like rule based systems may be considered. But
rule based systems can not solely provide security for the
applications which are in dynamic nature. Most of the
times model may visit unknown contexts, at that time the
agile agent will allot new name to the new context. Then
refactor the new context using the predefined context
information and metadata [15]. Agile agent maintains
security in three levels. Context capture, categorization,
modeling and allocating to proper applications are the
main

tasks in the present architecture. The next important
feature of Agile Process Agent is using the risk assessment
techniques to make informed choices as to which
requirements are to be addressed and computational /
probable security type is deserved. The proposed system
utilizes both rule based and probabilistic based decision
support systems for building valid security policies. The
following shows proposed architectural model.

5.1 REQUIREMENT ANALYSIS:
This process determines the important tasks required to be
implemented and unwanted tasks to be stopped. Each
requirement can be designed as a separate feature
(description of the required task). Also unwanted features
will be designed to secure the system from attackers. In
this phase Feature Driven Development (FDD) allows the
model to capture the details like potential security objects.
Then the agent decides the unwanted actions on those
secured objects (contexts). The important features will be
updated into the network centric server for the later use of
agent. Also in this module Agent will identify the
malicious data captured from various sensors to reject the
useless contexts by using security policies. While
discovering the contexts the architecture will quickly react
to the faults. This module also considers unambiguous or
missing contextual information which will be rarely
observed in other architectures. This process is the heart
process of Agile Process Agent. Also it requires
establishing security policies which hold a set of rules,
principles and practices that determine how security is
implemented. The potential risk contexts will be identified
in this phase while using the probabilistic methods like
statistical learning theory [25]. Through this method
identifying the risk context and rejecting such contexts /

features at the first stage of requirements itself will reduce
the burden on the system. The security policy must be
adaptable such that it can lead to create a new context for
the changed information.

5.2 CONTEXT DRIVEN DESIGN AND CONTEXT
DRIVEN MODELING:
This module models the standard contexts and maps the
security constraints on each defined model. In this module
authentication and authorization of the modeled contexts
will be checked. Accessibility, time for accessing the
information etc. will be mapped along with each context
using Web Ontology Language (OWL-S). Ontology
allows the model to map distinguished constraints on the
model. A contextual graph allows a context –based
representation of a given problem solving for operational
processes by taking into account the working environment.
Stephen S. Yau [16] illustrated that the context-based
security policy can be used to manage distributed
applications. Similarly Agile Process Agent tries
iteratively for each context to adapt the security policy and
model such contexts only which are authorized by the
system. Predefined security policies also provided in the
data base server as trusted contexts. If the exact match of
requested context model is not available in database the
agent will create a new model for the unknown model with
new name and updates in the contexts list of database
server. Agile agent observes the quick changes in sensor
data for the running context and adopts the changes using
JIT process.

5.3 CONTEXT DRIVEN DEVELOPMENT:
In this module Agile Process Agent will match the
applications (services) to their concerned context models.
Again for service delivery the agent should check the
authentication by using security policy. Through
authentication the agent can make sure that service is
delivered to the intended recipient, which can in turn make
sure that the services come from the known sources [21].
Security requirements are strictly contextually dependent
than any other type of requirements.

5.4 SECURITY POLICIES:
Context aware security policies will contain the
information regarding the authenticated user, location,
time and other required contextual information. Whenever
agent receives valid contextual information it will interact

Ap1, Ap2…Apn: Applications,. S1, S2… Sn: Sensors CM1, CM2, CMn: Context Models
Fig: 1 Proposed architectural model

Alti Siva Prakasa Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 711-716

714

with the database server to confirm whether it is a valid
context or not using encrypted protocols. Depending on
the match with security policy agent will take actions like
approving the information and forwarding for contextual
modeling or rejecting the information if it doesn’t match
with predefined security policy. Third type of action also
the agent may take if the data is partially satisfying the
policy constraints. Then Agent will apply the probabilistic
approach to determine to which policy it may satisfy, later
the data will be forwarded for context modeling module.
On the client side, the user should be sure that only
services matching his preferences would be returned.
From his point of view, trusting a service should therefore
go beyond the simple authentication of the service
provider and also encompass a complete certification
process of the capabilities of the service. On the server
side, the same problem is possible since the server does
not know the users that can be trusted and can gain access
to its service. They should therefore be accessible only to
client they trust to access them according to a precise
behavior guaranteed by some authority [26].The basic
ideas to protect the privacy are enabling access and
information to the authorized agents and protecting user’s
private space from un desirable interruptions provoked
intentionally by system abuse [27].

5.5 A CASE STUDY: University Campus
The present case study illustrates the definition of security
policy and updating the policies using adaptability feature
of the proposed architecture. In this case, a part of
locations in the University campus like Lecture theatre,
Laboratory and Library are considered. Accessibility of
resources is permitted in between 9am to 5pm. The
resources available are i) LCD projector, ii) Printer and a
iii) Fax machine. The designing of two security policies
namely Policy A and Policy B for context security and
updating are mentioned below.

Context security policy (Policy A1: Accepted):
Accept ((Locations->lecture theatre, Laboratory,
library), (Time->9am to 5pm), (User ID->E1000 to
9999), (Network ID->N1000, N2000, N3000), (Service
Request->LCD Projector, Printer, FAX))

Context security policy (Policy A) with function name
‘Accept’ contains five parameters to be satisfied namely
Location, Time, User ID, Network ID and Service
Request. Among all the parameters ‘Network ID’ is one of
the parameters that must be satisfied for any service
request. If an unauthorized user requests LCD Projector
access at 12pm while staying at faculty quarters, the Agent
will simply rejects the request. Since the first parameter
Location doesn’t match to satisfy the Policy A.

Context security policy (Policy A2: Partially
Accepted):
 Accept ((Locations->lecture theatre, Laboratory,
library), (Time->9am to 5pm), (User ID->E1000 to
9999), (Network ID->N1000, N2000, N3000), (Service
Request->LCD Projector, Printer, FAX))

In an instant if an employee requested the FAX machine to
access from the library location at 5.02 pm. Even though
the security policy A matches partially, the agent updates
the security policy at database server since it understood
that it may be an emergency case regarding that particular
machine instead of rejecting the request. Policies both A
and B will be kept in Data base.

Updated policy (Policy B:)
Update ((Locations->lecture theatre, Laboratories,
library), (time->9am to 6pm), (user ID->E1000 to
9999), (network ID->N1000, N2000, N3000), (Service
request->LCD Projector, Printer, FAX))

 The Update Policy (Policy B) with function name
‘Update’ contains the same parameters as Policy B, but
this function activated by the agile process agent when
ever few of the five parameters are of policy A are met.
This Policy Updates the context information and stores the
new context in the database server for further use.

Table 1 will show the Agile Process Agent actions for
different contextual information after applying the security
policies A and B.

Table1 Agile Process Agent Actions for security
policies

6. CONCLUSIONS AND FUTURE DIRECTION OF

THE WORK:
In the present work the flexible architecture for the
pervasive computing environment was thoroughly
discussed. The security policies considered in the present
architecture illustrates that agility as a key factor to
demonstrate the better efficiency over the other existing
architectures. Implementation, Database development,
agile documentation and agile configuration management
areas are yet to be explored for improving the response, as
per agility myths. Improving the security concerns of this
model by using Model-Driven Agile Development (MAD)
[16] is another direction for the proposed architecture

Context
ID

Geograp
hical
location
ID

Tim
e

User
ID

Net
work
ID

Servic
e
reques
ted

Policy
match

Agile
Proces
s
Agent
action

C1000 Lecture
theatre

9
am

E1234
5

N10
00

LCD
Projec
tor
access

yes Forwa
rd data
to next
modul
e

C1200 Railway
station

10
pm

E9873 unkn
own

Printer NO Discar
d the
contex
t data

C1500 AI
Laborat
ory

8
am

E3456 N20
00

Fax
machi
ne

Yes
(partia
l)

Updat
e the
policy

Alti Siva Prakasa Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 711-716

715

7. REFERENCES:
 [1] Albert Schmidt, Teco, Kriston Van Laerhoven., How to Build smart

applications, IEEE Personal Communications, August 2001
[2] Graham Tomas, Sotioris Terzis and Paddy Nixon, Towards

Dynamic Context Discovery and Composition, 1st UK-UbiNet
Workshop. Imperial College. London, England. September 2003.

[3] K.Henricksen & J.Indulsks, Developing Context aware Pervasive
Computing Applications: Models and Approach, Preprint submitted
to Elsevier Science, 20th July 2005

[4] Karen Hendrickson, J. IndulskaA.Software Engineering Framework
for Context-aware Pervasive Computing, Proceedings of the Third
National Conference for Emerging Researchers in Ageing, 2004

[5] Paddy Nixon, Simon Dobson and Gerard Lacey, Managing
interactions in smart environments, Springer Verlag, pp.243,
December 1999.

[6] Project oxygen, http://oxygen.ics.mit.edu
[7] Project Aura, http://www-2.cs.cmu.edu/~aura
[8] Jonathan S. Ostroff, David Makalsky and Richard Paige. Agile

Specification Driven Development. Fifth International Conference
on Extreme Programming and Agile Processes in Software
Engineering XP2004, June 6-10, 2004, Garmisch-Partenkirchen,
Germany.

[9] Jonathan S. Ostroff, Richard F. Paige, David Makalsky and Phillip
J. Brooke. E-Tester: a Contract-Aware and Agent-Based Unit
Testing Framework for Eiffel. Journal of Object Technology,
Volume 4 Number 7, Sep-Oct 2005.

[10] Mikio Aoyama, Web Based Agile Software Development, IEEE
software, November /December 1998.

[11] Planet Blue
 http://www.research.ibm.com/CompSci/planetblue
[12] Cooltown, http://cooltown/hp.com
[13] web site: www.agilelogic.com
[14] Paul Hodgetts, Denise Phillips and Oscar Chico, eXtreme

Development with the Java™ 2 Platform, Enterprise Edition
(J2EE™), Javaone Sun’s 2000 worldwide java developer
conference.

[15] Mikko Siponen, Richard Baskerville and Tapio Kuivalainen,
Integrating Security into Agile Development Methods, Proceedings
of the 38th Hawaii International Conference on System Sciences –
2005, 0-7695-2268-8/05

[16] Stephen S.Yau, Model Driven Agile Development (MAD) for
Situation-aware Software in Ubiquitous Computing Environments,
Proceedings of the 29th Annual International Computer Software
and Applications Conference (COMPSAC’05), 2005

[17] Ghitha Kouadri Mostefaoui, Contex-Aware Computing: A Guide for
the Pervasive Computing Community, Proceedings of the

IEEE/ACS International Conference On Pervasive Services (ICPS
’04) – 2004

[18] Robert Grimm, one.world:Experinces with a Pervasive Computing
Architecture, IEEE CS and IEEE ComSoc, July-september 2004,
Pervasive Computing.

[19]http://en.wikipedia.org
[20] K.Beznosov,eXtreme Security Engineering. In Proceeding of First

ACM Bizsec Workshop, Fairfax VA, USA, October 2003.
 [21] Domenico Cortroneo, Almendo Grazizno and Stefano Russo,

Security Requirements in Service Oriented Architectures for
Ubiquitous Computing, 2nd workshop on Middleware of Pervasive
and Ad-Hoc Computing, Toronto, Canada, 2004.

[22] Eila Niemala, Teemu Viskivuo, Agile Middleware of Pervasive
Computing Environments, Proceedings of the 2nd IEEE Annual
Conference on Pervasive Computing and Communications
Workshops (PERCOMW’04), 2004.

 [23] Konstantin Beznosov, Philippe Krunchten, Towards Agile Security
Assurance, NSPW, NOVA

[24] Patrick Brezillon and Ghita Kouadri Mostefaoui, Context-Base
Security Policies: A New Modeling Approach, Proceedings of the
2nd IEEE Annual Conference on Pervasive Computing and
Communications workshops (PERCOMW’04), 2004.

[25] Vladimir N. Vapnik, An Overviiew of Statistical Learning Theory,
IEEE Transactions on Neural Networks, Vol 10, No 5, September
1999.

[26] Slim Trablsi, Laurent Gomez and Yves Roudier , Context Aware
Security Policy for the Service Discovery, 21st International
Conference on Advanced Information Networking and Applications
Workshop (AINAW’07).

[27] Nuno Pratas, P.N. Anggraeni, S.A. Wardana, Neeli Reshmi Prasad
and Ramjee Prasad, Context Aware Trust and Privacy Application
for Mobile Identification Sytem, reviewed by IEEE
Communications Society subject matter experts for publication on
WCNC 2009 proceedings.

[28] Oleg Davidyuk, Istvan Selek and Jon Imanol Duran, Algorithms for
Composing Pervasive Applications, International journal of
Software Engineering and Applications, Vol 2, No.2, April 2008

[29] J.Madhusudanan, A.Selva Kumar and R Sudha, Framework for
Context Aware Applications, 2010 Second International
Conference on Computing, communication and networking
technologies, published by IEEE Computer Society.

[30] Xiang Wang and Ian Davidson, Discovering Contexts and
Contextual Outliers Using Random Walks in Graphs, 2009 Ninth
internatonal conference on Data mining, published by IEEE
Computer Society.Scotia, Canada

Alti Siva Prakasa Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 711-716

716

